高数,求下列函数导数,需要详细过程?
4个回答
展开全部
这么多题,给你做做最后一题吧。y=lnu, u=lnv, v=lnx.
v'=1/x, u'=v'/v=1/xv=1/xlnx=lnx^(-x), y'=u'/u=lnx^(-x)/lnv=lnx^(-x)/lnlnx.
v'=1/x, u'=v'/v=1/xv=1/xlnx=lnx^(-x), y'=u'/u=lnx^(-x)/lnv=lnx^(-x)/lnlnx.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
4) y' = [e^(arctanx^(1/2)]' = e^[arctanx^(1/2)] * [arctanx^(1/2)]'
= e^[arctanx^(1/2)] *1/(1+x^2) *[x^(1/2)]' = e^[arctanx^(1/2)] /(1+x^2) *[1/2x^(1/2)]
= e^[arctanx^(1/2)] / [2(1+x^2) *x^(1/2)]
8) y' =(lnlnlnx)'=1/(lnlnx) * (lnlnx)' = 1/(lnlnx)* 1/lnx *(lnx)'=1/[lnx* (lnlnx)] *1/x
=1/(x*lnx*lnlnx)
= e^[arctanx^(1/2)] *1/(1+x^2) *[x^(1/2)]' = e^[arctanx^(1/2)] /(1+x^2) *[1/2x^(1/2)]
= e^[arctanx^(1/2)] / [2(1+x^2) *x^(1/2)]
8) y' =(lnlnlnx)'=1/(lnlnx) * (lnlnx)' = 1/(lnlnx)* 1/lnx *(lnx)'=1/[lnx* (lnlnx)] *1/x
=1/(x*lnx*lnlnx)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |