f(x)=e的x次方-1在y轴交点处的切线方程为?
1个回答
展开全部
∵f(x)=ex
∴f(1)=e且f′(x)=ex
根据导数的几何意义可知函数f(x)在x=1处的切线斜率k=f′(1)=e
∴函数f(x)=ex在x=1处的切线方程是y-e=e(x-1)即y=ex
答案为y=ex
名词解释
切线
曲线切线和法线的几何意义
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。
曲线切线和法线的代数定义
在高等数学中,对于一个函数,如果函数某处有导数,那么此处的导数就是过此处的切线的斜率,该点和斜率所构成的直线就为该函数的一个切线。
此时会出现特殊例子,如在函数y=x^3中,x轴也为其切线,因为X轴与该函数只有一个交点:
∴f(1)=e且f′(x)=ex
根据导数的几何意义可知函数f(x)在x=1处的切线斜率k=f′(1)=e
∴函数f(x)=ex在x=1处的切线方程是y-e=e(x-1)即y=ex
答案为y=ex
名词解释
切线
曲线切线和法线的几何意义
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。
曲线切线和法线的代数定义
在高等数学中,对于一个函数,如果函数某处有导数,那么此处的导数就是过此处的切线的斜率,该点和斜率所构成的直线就为该函数的一个切线。
此时会出现特殊例子,如在函数y=x^3中,x轴也为其切线,因为X轴与该函数只有一个交点:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询