1个回答
展开全部
因为f(x)在[a,a+1/2]上连续,所以f(x)在[a,a+1/2]上有界
即|f(x)|在[a,a+1/2]上有最大值M>=0
令|f(b)|=M,b∈[a,a+1/2],根据拉格朗日中值定理,存在ξ∈(a,b),使得
M=|f(b)|=|f(a)+f'(ξ)*(b-a)|=|f'(ξ)|*(b-a)<=|f(ξ)|*(b-a)<=M/2
所以M=0,即f(x)在[a,a+1/2]上恒等于0
同理,|f(x)|在[a+1/2,a+1]上有最大值N>=0
令|f(c)|=N,c∈[a+1/2,a+1],根据中值定理,存在η∈(a+1/2,c),使得
N=|f(c)|=|f(a+1/2)+f'(η)*(c-a-1/2)|=|f'(η)|*(c-a-1/2)<=N/2
所以N=0,即f(x)在[a+1/2,a+1]上恒等于0
......
f(x)在[a+k/2,a+(k+1)/2]上恒等于0,其中k=0,1,2...
所以f(x)在[a,a+1/2]∪[a+1/2,a+1]∪...∪[a+k/2,a+(k+1)/2]∪...上恒等于0
即f(x)在[a,+∞)上恒等于0
即|f(x)|在[a,a+1/2]上有最大值M>=0
令|f(b)|=M,b∈[a,a+1/2],根据拉格朗日中值定理,存在ξ∈(a,b),使得
M=|f(b)|=|f(a)+f'(ξ)*(b-a)|=|f'(ξ)|*(b-a)<=|f(ξ)|*(b-a)<=M/2
所以M=0,即f(x)在[a,a+1/2]上恒等于0
同理,|f(x)|在[a+1/2,a+1]上有最大值N>=0
令|f(c)|=N,c∈[a+1/2,a+1],根据中值定理,存在η∈(a+1/2,c),使得
N=|f(c)|=|f(a+1/2)+f'(η)*(c-a-1/2)|=|f'(η)|*(c-a-1/2)<=N/2
所以N=0,即f(x)在[a+1/2,a+1]上恒等于0
......
f(x)在[a+k/2,a+(k+1)/2]上恒等于0,其中k=0,1,2...
所以f(x)在[a,a+1/2]∪[a+1/2,a+1]∪...∪[a+k/2,a+(k+1)/2]∪...上恒等于0
即f(x)在[a,+∞)上恒等于0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询