求(e^x-e^y)/sinxy在(0,0)的极限
展开全部
lim(x->,y->0)[(e^x-e^x)/sin(x²0)[0/sin(x²,lim(x->)]
=lim(x->0)[(e^x-e^y)/sin(xy)]=lim(x->0)[(e^x-e^0)/sin(0)]
=lim(x->)]
=0
当y=0时解:∵当y=x时;0)[(e^x-1)/0]
=∞
∴说明x和y沿着不同的路径趋近于零时,(e^x-e^y)/sin(xy)的极限值都不相同
故(e^x-e^y)/sin(xy)在(0;0)[(e^x-e^y)/sin(xy)]=lim(x->0;0,y->
=lim(x->0)[(e^x-e^y)/sin(xy)]=lim(x->0)[(e^x-e^0)/sin(0)]
=lim(x->)]
=0
当y=0时解:∵当y=x时;0)[(e^x-1)/0]
=∞
∴说明x和y沿着不同的路径趋近于零时,(e^x-e^y)/sin(xy)的极限值都不相同
故(e^x-e^y)/sin(xy)在(0;0)[(e^x-e^y)/sin(xy)]=lim(x->0;0,y->
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询