
已知sin(a+π/6)=3/5,a∈(0,π/2),求sina
展开全部
sin(a+π/6)=3/5,a∈(0,π/2)
所以
cos(a+π/6)=4/5
所以
sina=sin(a+π/6-π/6)
=sin(a+π/6)cosπ/6-cos(a+π/6)sinπ/6
=3/5*√3/2-(4/5)*1/2
=(3√3-4)/10
所以
cos(a+π/6)=4/5
所以
sina=sin(a+π/6-π/6)
=sin(a+π/6)cosπ/6-cos(a+π/6)sinπ/6
=3/5*√3/2-(4/5)*1/2
=(3√3-4)/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(a+π/6)=3/5,a∈(0,π/2),所以cos(a+π/6)=4/5
sin(a+π/6-π/6)=sin(a+π/6)cosπ/6-cos(a+π/6)sinπ/6
=3/5乘以根号3/2-4/5乘以1/2
=3根号3/10-2/5
sin(a+π/6-π/6)=sin(a+π/6)cosπ/6-cos(a+π/6)sinπ/6
=3/5乘以根号3/2-4/5乘以1/2
=3根号3/10-2/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a∈(0,π/2)
a-π/6∈(-π/6,π/3)
sin(a-π/6)=3/5,所以 cos(a-π/6)=4/5
sina=sin[(a-π/6)+π/6]
=sin(a-π/6)sin(π/6)+cos(a-π/6)cos(π/6)
=(3/5)*(1/2)+(4/5)*(√3/2)
=(3+4√3)/10
a-π/6∈(-π/6,π/3)
sin(a-π/6)=3/5,所以 cos(a-π/6)=4/5
sina=sin[(a-π/6)+π/6]
=sin(a-π/6)sin(π/6)+cos(a-π/6)cos(π/6)
=(3/5)*(1/2)+(4/5)*(√3/2)
=(3+4√3)/10
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a∈(0,π/2)
a+π/6∈(π/6,2π/3)
sin(a+π/6)=3/5
cos(a+π/6)=±4/5
sina
=sin[(a+π/6)-π/6]
=sin(a+π/6)cosπ/6-cos(a+π/6)sinπ/6
=3/5*√3/2-(±4/5)*1/2
=(3√3±4/5)/10
a+π/6∈(π/6,2π/3)
sin(a+π/6)=3/5
cos(a+π/6)=±4/5
sina
=sin[(a+π/6)-π/6]
=sin(a+π/6)cosπ/6-cos(a+π/6)sinπ/6
=3/5*√3/2-(±4/5)*1/2
=(3√3±4/5)/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cos(a+π/6)=-2/5
Sina=sin〖(a+π/6)-π/6〗=sin(a+π/6)cosπ/6-sinπ/6cos(a+π/6)
=3/5× /2-1/2×(-2/5)=(3 +2)/10
Sina=sin〖(a+π/6)-π/6〗=sin(a+π/6)cosπ/6-sinπ/6cos(a+π/6)
=3/5× /2-1/2×(-2/5)=(3 +2)/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询