函数的值域怎么求
6个回答
展开全部
其没有固定的方法和模式。但常用方法有:
(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;
(2)配方法:配方法是求“二次函数类”值域的基本方法,形如f(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法
(3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx+d/ax+b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。
(4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax+b±根号cx+d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧!
(1)y=4-根号3+2x-x^
此题就得用配方法:由3+2x-x^≥0,得-1≤x≤3.
∵y=4-根号-1(x-1)^+4,∴当x=1时,ymin=4-2=2.
当x=-1或3时,ymax=4.
∴函数值域为[2,4]
(2)y=2x+根号1-2x
此题用换元法:
令t=根号1-2x(t≥0),则x=1-t^/2
∵y=-t^+t+1=-(t-1/2)^+5/4,
∵当t=1/2即x=3/8时,ymax=5/4,无最小值.
∴函数值域为(-∞,5/4)
(3)y=1-x/2x+5
用分离常数法
∵y=-1/2+7/2/2x+5,
7/2/2x+5≠0,
∴y≠-1/2
(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;
(2)配方法:配方法是求“二次函数类”值域的基本方法,形如f(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法
(3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx+d/ax+b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。
(4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax+b±根号cx+d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧!
(1)y=4-根号3+2x-x^
此题就得用配方法:由3+2x-x^≥0,得-1≤x≤3.
∵y=4-根号-1(x-1)^+4,∴当x=1时,ymin=4-2=2.
当x=-1或3时,ymax=4.
∴函数值域为[2,4]
(2)y=2x+根号1-2x
此题用换元法:
令t=根号1-2x(t≥0),则x=1-t^/2
∵y=-t^+t+1=-(t-1/2)^+5/4,
∵当t=1/2即x=3/8时,ymax=5/4,无最小值.
∴函数值域为(-∞,5/4)
(3)y=1-x/2x+5
用分离常数法
∵y=-1/2+7/2/2x+5,
7/2/2x+5≠0,
∴y≠-1/2
展开全部
函数值域的几种常见方法
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a
0)的定义域为R,值域为R;
反比例函数
的定义域为{x|x
0},值域为{y|y
0};
二次函数
的定义域为R,
当a>0时,值域为{
};当a<0时,值域为{
}.
例1.求下列函数的值域
①
y=3x+2(-1
x
1)
②
③
④
解:①∵-1
x
1,∴-3
3x
3,
∴-1
3x+2
5,即-1
y
5,∴值域是[-1,5]
②∵
∴
即函数
的值域是
{
y|
y
2}
③
④当x>0,∴
=
,
当x<0时,
=-
∴值域是
[2,+
).(此法也称为配方法)
函数
的图像为:
2.二次函数比区间上的值域(最值):
例2
求下列函数的最大值、最小值与值域:
①
;
解:∵
,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3
,无最大值;函数的值域是{y|y
-3
}.
②∵顶点横坐标2
[3,4],
当x=3时,y=
-2;x=4时,y=1;
∴在[3,4]上,
=-2,
=1;值域为[-2,1].
③∵顶点横坐标2
[0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上,
=-2,
=1;值域为[-2,1].
④∵顶点横坐标2
[0,5],当x=0时,y=1;x=2时,y=-3,
x=5时,y=6,
∴在[0,1]上,
=-3,
=6;值域为[-3,6].
注:对于二次函数
,
⑴若定义域为R时,
①当a>0时,则当
时,其最小值
;
②当a<0时,则当
时,其最大值
.
⑵若定义域为x
[a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若
[a,b],则
是函数的最小值(a>0)时或最大值(a<0)时,再比较
的大小决定函数的最大(小)值.
②若
[a,b],则[a,b]是在
的单调区间内,只需比较
的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数
的值域
方法一:去分母得
(y-1)
+(y+5)x-6y-6=0
①
当
y11时
∵x?R
∴△=(y+5)
+4(y-1)×6(y+1)
0
由此得
(5y+1)
0
检验
时
(代入①求根)
∵2
?
定义域
{
x|
x12且
x13}
∴
再检验
y=1
代入①求得
x=2
∴y11
综上所述,函数
的值域为
{
y|
y11且
y1
}
方法二:把已知函数化为函数
(x12)
∵
x=2时
即
说明:此法是利用方程思想来处理函数问题,一般称判别式法.
判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数
的值域
解:设
则
t
0
x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式:
,画出它的图象(下图),由图象可知,函数的值域是{y|y
3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+
].
如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.
小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a
0)的定义域为R,值域为R;
反比例函数
的定义域为{x|x
0},值域为{y|y
0};
二次函数
的定义域为R,
当a>0时,值域为{
};当a<0时,值域为{
}.
例1.求下列函数的值域
①
y=3x+2(-1
x
1)
②
③
④
解:①∵-1
x
1,∴-3
3x
3,
∴-1
3x+2
5,即-1
y
5,∴值域是[-1,5]
②∵
∴
即函数
的值域是
{
y|
y
2}
③
④当x>0,∴
=
,
当x<0时,
=-
∴值域是
[2,+
).(此法也称为配方法)
函数
的图像为:
2.二次函数比区间上的值域(最值):
例2
求下列函数的最大值、最小值与值域:
①
;
解:∵
,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3
,无最大值;函数的值域是{y|y
-3
}.
②∵顶点横坐标2
[3,4],
当x=3时,y=
-2;x=4时,y=1;
∴在[3,4]上,
=-2,
=1;值域为[-2,1].
③∵顶点横坐标2
[0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上,
=-2,
=1;值域为[-2,1].
④∵顶点横坐标2
[0,5],当x=0时,y=1;x=2时,y=-3,
x=5时,y=6,
∴在[0,1]上,
=-3,
=6;值域为[-3,6].
注:对于二次函数
,
⑴若定义域为R时,
①当a>0时,则当
时,其最小值
;
②当a<0时,则当
时,其最大值
.
⑵若定义域为x
[a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若
[a,b],则
是函数的最小值(a>0)时或最大值(a<0)时,再比较
的大小决定函数的最大(小)值.
②若
[a,b],则[a,b]是在
的单调区间内,只需比较
的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数
的值域
方法一:去分母得
(y-1)
+(y+5)x-6y-6=0
①
当
y11时
∵x?R
∴△=(y+5)
+4(y-1)×6(y+1)
0
由此得
(5y+1)
0
检验
时
(代入①求根)
∵2
?
定义域
{
x|
x12且
x13}
∴
再检验
y=1
代入①求得
x=2
∴y11
综上所述,函数
的值域为
{
y|
y11且
y1
}
方法二:把已知函数化为函数
(x12)
∵
x=2时
即
说明:此法是利用方程思想来处理函数问题,一般称判别式法.
判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数
的值域
解:设
则
t
0
x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式:
,画出它的图象(下图),由图象可知,函数的值域是{y|y
3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+
].
如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.
小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1定义域的求法.(1)若ƒ
是整式,则定义域为R
.(2)若ƒ
是分式,则定义域为使分母不为零的全体实数.(3)若ƒ
是偶次根式,则定义域为使被开方数为非负数的全体实数.(4)若ƒ
是复合函数,则定义域由复合的各基本函数的定义域组成的不等式组确定.2.值域的求法,有:观察法、配方法、判别式法、换元法等.
是整式,则定义域为R
.(2)若ƒ
是分式,则定义域为使分母不为零的全体实数.(3)若ƒ
是偶次根式,则定义域为使被开方数为非负数的全体实数.(4)若ƒ
是复合函数,则定义域由复合的各基本函数的定义域组成的不等式组确定.2.值域的求法,有:观察法、配方法、判别式法、换元法等.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在函数图像中,y符合x取值范围的y的取值范围就是函数的值域,通常用括号以及两个数字来表示最大和最小取值。正方向无限是+∞,负方向无限是-∞。
例如抛物线(二次函数)y=x²+1的值域为:(1,+∞)
如果限定x的取值范围为-2≤x≤2,那么函数的值域为(1,5)
如果能够帮到你的话,希望能够得到你的采纳。如果还有不懂的,欢迎追问!
例如抛物线(二次函数)y=x²+1的值域为:(1,+∞)
如果限定x的取值范围为-2≤x≤2,那么函数的值域为(1,5)
如果能够帮到你的话,希望能够得到你的采纳。如果还有不懂的,欢迎追问!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令
2cosx-1=t,
则y=(t+2)/t=1+2/t
又因为t=2cosx-1
x属于R,所以t的值域为【-3,1】
所以Y值域为(负无穷,1/3】U【3,正无穷)
可以帮到你。
2cosx-1=t,
则y=(t+2)/t=1+2/t
又因为t=2cosx-1
x属于R,所以t的值域为【-3,1】
所以Y值域为(负无穷,1/3】U【3,正无穷)
可以帮到你。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |