已知函数f(x)=sin(2x+π/3)+sin(2x-π/3)+cos2x (1)求函数的最小正周期
(2)将函数f(x)的图像沿向量m=(-3π/8,2)平移得到函数g(x)的图像,求函数g(x)的单调区间...
(2)将函数f(x)的图像沿向量m=(-3π/8,2)平移得到函数g(x)的图像,求函数g(x)的单调区间
展开
展开全部
解析:
f(x)=sin(2x+π/3)+sin(2x-π/3)+cos2x
=sin2x*cos(π/3)+cos2x*sin(π/3)+sin2x*cos(π/3)-cos2x*sin(π/3)+cos2x
=2sin2x*cos(π/3)+cos2x
=sin2x+cos2x
=√2*(sin2x *√2/2 +cos2x *√2/2)
=√2*[sin2x *cos(π/4) +cos2x *sin(π/4)]
=√2*sin(2x + π/4)
(1) 可知函数f(x)的最小正周期T=2π/2=π
(2) 将函数f(x)的图像沿向量m=(-3π/8,2)平移得到函数g(x)的图像,那么:
函数g(x)=√2*sin[2(x+ 3π/8) + π/4] +2
=√2*sin(2x+ 3π/4 + π/4) +2
=√2*sin(2x+ π) +2
=-√2*sin2x +2
则可知:
当2kπ-π/2≤2x≤2kπ+π/2即:kπ-π/4≤ x ≤kπ+π/4,k∈Z时,函数g(x)是减函数,即对应的单调减区间为[kπ-π/4,kπ+π/4],k∈Z;
当2kπ+π/2≤2x≤2kπ+3π/2即:kπ+π/4≤ x ≤kπ+3π/4,k∈Z时,函数g(x)是增函数,即对应的单调增区间为[kπ+ π/4,kπ+ 3π/4],k∈Z。
f(x)=sin(2x+π/3)+sin(2x-π/3)+cos2x
=sin2x*cos(π/3)+cos2x*sin(π/3)+sin2x*cos(π/3)-cos2x*sin(π/3)+cos2x
=2sin2x*cos(π/3)+cos2x
=sin2x+cos2x
=√2*(sin2x *√2/2 +cos2x *√2/2)
=√2*[sin2x *cos(π/4) +cos2x *sin(π/4)]
=√2*sin(2x + π/4)
(1) 可知函数f(x)的最小正周期T=2π/2=π
(2) 将函数f(x)的图像沿向量m=(-3π/8,2)平移得到函数g(x)的图像,那么:
函数g(x)=√2*sin[2(x+ 3π/8) + π/4] +2
=√2*sin(2x+ 3π/4 + π/4) +2
=√2*sin(2x+ π) +2
=-√2*sin2x +2
则可知:
当2kπ-π/2≤2x≤2kπ+π/2即:kπ-π/4≤ x ≤kπ+π/4,k∈Z时,函数g(x)是减函数,即对应的单调减区间为[kπ-π/4,kπ+π/4],k∈Z;
当2kπ+π/2≤2x≤2kπ+3π/2即:kπ+π/4≤ x ≤kπ+3π/4,k∈Z时,函数g(x)是增函数,即对应的单调增区间为[kπ+ π/4,kπ+ 3π/4],k∈Z。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询