求齐次方程的通解xy′-y-√(y²-x²)=0

 我来答
函良策弘冉
2020-05-17 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:36%
帮助的人:580万
展开全部
齐次方程的通解xy′-y-√(y²-x²)=0为。
解:因为xy′-y-√(y²-x²)=0,
那么等式两边都除以x可得,
y'-(y/x)-√((y/x)²-1)=0
那么令y/x=m,则y=mx,
那么 y'=(mx)'=m'x+m
把y/x=m以及y'=m'x+m代入y'-(y/x)-√((y/x)²-1)=0可得,
m'x+m-m-√(m²-1)=0,即m'x-√(m²-1)=0
即dm/dx*x-√(m²-1)=0
则dm/√(m²-1)=dx/x,
积分可得, ln[m+√(m²-1)]=lnx+lnc=lncx
即√(m²-1)=cx-m
又m=y/x,那么
√((y/x)²-1)=cx-y/x
即y=(cx)²/2+1/(2c)
(x>0)
扩展资料:
微分方程的解
1、一阶线性常微分方程的解
对于一阶线性常微分方程y'+p(x)y+q(x)=0,可知其通解为y=C(x)*e^(-∫p(x)dx)。然后将这个通解代回到原式中,即可求出C(x)的值。
2、二阶常系数齐次常微分方程的解
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解。
对于二阶常系数齐次常微分方程y''+py'+qy=0,可求得其通解为y=c1y1+c2y2。
然后可通过其特征方程r^2+pr+q=0来求解二阶常系数齐次常微分方程的通解。
(1)当r1=r2,则有y=(C1+C2*x)e^(rx),
(2)当r1≠r2,则有y=C1*e^(r1x)+C2*x*e^(r2x)
(3)在共轭复数根的情况下,y=e^(αx)*(C1*cos(βx)+C2*sin(βx))
参考资料来源:百度百科-微分方程
Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式