计算计算∫∫﹙x^2+y^2﹚dS曲面∑是z^2=3(x^2+y^2)被平面z=0和z=3所截得的部分

丘冷萱Ad
2012-06-19 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:4644万
展开全部
z=√(3x²+3y²)
(∂z/∂x)²=3x²/(x²+y²),(∂z/∂y)²=3y²/(x²+y²),
√(1+(∂z/∂x)²+(∂z/∂x)²)=√(1+3)=2
∫∫﹙x^2+y^2﹚dS
=2∫∫﹙x^2+y^2﹚dxdy 积分区域为:x²+y²≤3
=2∫∫ r³ drdθ
=2∫[0→2π] dθ∫[0→√3] r³ dr
=4π*(1/4)r^4 |[0→√3]
=9π
追问
为什么那个积分区域是x²+y²≤3?
追答
z=3与z^2=3(x^2+y^2)相交得:9=3(x^2+y^2),即x²+y²=3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式