已知0《x《π/4,sin(π/4-x)=5/13,求cos2x/cos(π/4+x)
展开全部
已知0<x<π/4,sin(π/4-x)=5/13,求cos2x/cos(π/4+x)的值
已知0<x<π/4,则岁雹sinx>0,cosx>0
sin(π/4-x)=sinπ/4·cosx-cosπ/4·sinx=√2/2(cosx-sinx)=5/13
则cosx-sinx=5√2/13,又因为sin²x+cos²x=1
2cosx·sinx=-(cosx-sinx)²+sin²x+cos²乎桐帆x=1-50/169=119/169
(cosx+sinx)²=(cosx-sinx)²+4cosx·sinx=50/169+238/169=288/169
则cosx+sinx=12√2/13
cos2x/cos(π/4+x)=(cos²x-sin²x)/(cosπ/4·cosx-sinπ/4·sinx)=(cosx+sinx)(cosx-sinx)/[√2/2(cosx-sinx)]=√2(cosx+sinx)=√轮粗2×12√2/13=24/13
已知0<x<π/4,则岁雹sinx>0,cosx>0
sin(π/4-x)=sinπ/4·cosx-cosπ/4·sinx=√2/2(cosx-sinx)=5/13
则cosx-sinx=5√2/13,又因为sin²x+cos²x=1
2cosx·sinx=-(cosx-sinx)²+sin²x+cos²乎桐帆x=1-50/169=119/169
(cosx+sinx)²=(cosx-sinx)²+4cosx·sinx=50/169+238/169=288/169
则cosx+sinx=12√2/13
cos2x/cos(π/4+x)=(cos²x-sin²x)/(cosπ/4·cosx-sinπ/4·sinx)=(cosx+sinx)(cosx-sinx)/[√2/2(cosx-sinx)]=√2(cosx+sinx)=√轮粗2×12√2/13=24/13
参考资料: http://zhidao.baidu.com/question/375704030.html?pn=0
展开全部
sin(π/4-x)改察=5/13 , √2/2(cosx-sinx)=5/13 , (cosx-sinx)^2=50/169 , (1-sin2x)=50/169
sin2x=119/169 , cos2x=120/侍歼敬169 , sin(π/4-x)=sin[π/2-(π/4+x)]=cos(π/4+x)=5/13
cos2x/cos(π/4+x)=(120/老慎169)/(5/13)=24/13
sin2x=119/169 , cos2x=120/侍歼敬169 , sin(π/4-x)=sin[π/2-(π/4+x)]=cos(π/4+x)=5/13
cos2x/cos(π/4+x)=(120/老慎169)/(5/13)=24/13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询