求定积分∫(sinx)^(n-1)cos(n+1)xdx,上限为π,下限为0.书上说用分部积分法

 我来答
新科技17
2022-07-03 · TA获得超过5867个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:73.2万
展开全部
∫[0,π] sinx^(n-1) cosx^(n+1)dx=∫[0,π]sinx^(n-1)cosx^(n-1)*cosx^2dx=(1/2^n)∫[0,π](sin2x)^n [(1+cos2x)/2 ]dx= (1/2^n)∫[0,π]sin(2x)^ndx - (1/2^(n+2))∫[0,π]sin(2x)^ndsin2x=(1/2^(n+1))∫[0,π]sin...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式