
二阶常系数齐次线性微分方程通解是什么?
展开全部
常系数线性微分方程:y″′-2y″+y′-2y=0,①
①对应的特征方程为:
λ3-2λ2+λ-2=0,②
将②化简得:
(λ2+1)(λ-2)=0,
求得方程②的特征根分别为:λ1=2,λ2=±i,
于是方程①的基本解组为:e2x,cosx,sinx,
从而方程①的通解为:
y(x)=C1e2x+C2cosx+C3sinx,其中C1,C2,C3为任意常量。
扩展资料:
二阶常系数齐次线性微分方程解法:
特征根法是解常系数齐次线性微分方程的一种通用方法。
(1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
此方程的通解是x-y+xy=C。
参考资料来源:百度百科-通解 (微分方程术语)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-09-30 广告
上海艾羽信息科技有限公司是一家以CAE软件销售、技术咨询及服务,仿真咨询及规划布局为一体的高科技公司。作为ANSYS的合作伙伴,艾羽致力于将ANSYS推出的产品,通过业界性能颇佳、丰富的工程仿真软件产品组合帮助客户解决复杂的仿真难题。力求与...
点击进入详情页
本回答由VSH艾羽提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询