已知向量a=(cos3x/2,sin3x/2),向量b=(cosx/2,-sinx/2),|a+b|=1,x∈[0,π],求x

fnxnmn
2012-06-24 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6718万
展开全部
向量a=(cos3x/2,sin3x/2),向量b=(cosx/2,-sinx/2),
a•b=cos3x/2cosx/2-sin3x/2sinx/2=cos(3x/2+x/2)=cos2x
|a+b| =√[(cos3x/2+cosx/2)^2+(sin3x/2-sinx/2)^2]
=√[(cos3x/2)^2+(sin3x/2)^2+(cosx/2)^2+(sinx/2)^2+2cos3x/2cosx/2-2sin3x/2sinx/2]
=√(2+2(cos3x/2cosx/2-2sin3x/2sinx/2))
=√(2+2cos2x)
=√(2+2(cosx)^2-2(sinx)^2)
=√4(cosx)^2
=2|cosx|
因为|a+b|=1,所以|cosx|=1/2,
即cosx=±1/2,
∵x∈[0,π],
∴x=π/3或2π/3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式