高数积分公式表
1个回答
展开全部
①基本公式:
高数基本24个积分公式:
1.∫kdx=kx+C(k是常数)。
2.∫xdx=+1+C,(≠1)+1dx。
3.∫=ln|x|+Cx1。
4.∫dx=arctanx+C21+x1。
5.∫dx=arcsinx+C21x。
6.∫cosxdx=sinx+C。
7.∫sinxdx=cosx+C。
8.∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。
9.∫secxtanxdx=secx+C。
10.∫cscxcotxdx=cscx+C。
11.∫axdx=+Clna。
12.[∫f(x)dx]'=f(x)。
13.∫f'(x)dx=f(x)+c。
14.∫d(f(x))=f(x)+c。
15.∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c。
16.∫secxdx=ln|secx+tanx|+c。
17.∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c。
18.∫1/√(a^2-x^2)dx=arcsin(x/a)+c。
19.∫sec^2xdx=tanx+c。
20.∫shxdx=chx+c。
21.∫chxdx=shx+c。
22.∫thxdx=ln(chx)+c。
23.令u=1x2,即∫u=23u+C3312122=3u+C=3(1x)+C12d(1x)2
24.令u=cosx=2,即∫u=22+C=u+C=cosx+C。
②不定积分:
设f(x)是函数f(x)的一个原函数,把函数f(x)的所有原函数f(x)+c(c为任意常数)成为函数f(x)的不定积分,记作,即∫f(x)dx=f(x)+c.
其中∫名为积分号,f(x)名为被积函数,x名为积分变量,f(x)dx名为被积式,c名为积分常数,求已知函数的不定积分的过程也就是对这个函数进行积分。
高数基本24个积分公式:
1.∫kdx=kx+C(k是常数)。
2.∫xdx=+1+C,(≠1)+1dx。
3.∫=ln|x|+Cx1。
4.∫dx=arctanx+C21+x1。
5.∫dx=arcsinx+C21x。
6.∫cosxdx=sinx+C。
7.∫sinxdx=cosx+C。
8.∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。
9.∫secxtanxdx=secx+C。
10.∫cscxcotxdx=cscx+C。
11.∫axdx=+Clna。
12.[∫f(x)dx]'=f(x)。
13.∫f'(x)dx=f(x)+c。
14.∫d(f(x))=f(x)+c。
15.∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c。
16.∫secxdx=ln|secx+tanx|+c。
17.∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c。
18.∫1/√(a^2-x^2)dx=arcsin(x/a)+c。
19.∫sec^2xdx=tanx+c。
20.∫shxdx=chx+c。
21.∫chxdx=shx+c。
22.∫thxdx=ln(chx)+c。
23.令u=1x2,即∫u=23u+C3312122=3u+C=3(1x)+C12d(1x)2
24.令u=cosx=2,即∫u=22+C=u+C=cosx+C。
②不定积分:
设f(x)是函数f(x)的一个原函数,把函数f(x)的所有原函数f(x)+c(c为任意常数)成为函数f(x)的不定积分,记作,即∫f(x)dx=f(x)+c.
其中∫名为积分号,f(x)名为被积函数,x名为积分变量,f(x)dx名为被积式,c名为积分常数,求已知函数的不定积分的过程也就是对这个函数进行积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询