设A为n阶可逆矩阵,A*为A的伴随矩阵,证明A*的秩r(A*)=n
4个回答
展开全部
证明:
∵|A| A逆=A*
∴|A*|=||A| A逆|=|A|^n |A*逆|
而A可逆,所以|A|≠0且|A*逆|≠0
∴|A*|≠0,即A*可逆,即满秩,r(A*)=n
扩展资料
矩阵的秩的性质:
1、矩阵的行秩,列秩,秩都相等。
2、 初等变换不改变矩阵的秩。
3、 矩阵的乘积的秩Rab<=min{Ra,Rb}。
4、P,Q为可逆矩阵,则 r(PA)=r(A)=r(AQ)=r(PAQ)。
5、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
6、当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
证明:
∵|A| A逆=A*
∴|A*|=||A| A逆|=|A|^n |A*逆|
而A可逆,所以|A|≠0且|A*逆|≠0
∴|A*|≠0,
即A*可逆,即满秩,r(A*)=n
∵|A| A逆=A*
∴|A*|=||A| A逆|=|A|^n |A*逆|
而A可逆,所以|A|≠0且|A*逆|≠0
∴|A*|≠0,
即A*可逆,即满秩,r(A*)=n
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
r(A^-1) = r(A) = n
A* = A^-1 * |A|
所以 r(A*) = r(A^-1) = n
A* = A^-1 * |A|
所以 r(A*) = r(A^-1) = n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |