换底公式的详细证明?对数函数
展开全部
换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] 所以log(a)(N)=log(b)(N) / log(b)(a)
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] 所以log(a)(N)=log(b)(N) / log(b)(a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设N=logab(表示以a为底b的对数)
b=a^N
lnb=Nlna
N=lnb/lna=logab
b=a^N
lnb=Nlna
N=lnb/lna=logab
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
loa(a,b)=x,
a^x=b,
log(m,a^x)=log(a,b),
xlog(m,a)=log(a,b),
x=loa(a,b)=log(a,b)/log(m,a).
a^x=b,
log(m,a^x)=log(a,b),
xlog(m,a)=log(a,b),
x=loa(a,b)=log(a,b)/log(m,a).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对数函数的换底公式及其证明
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询