求证根号6+根号7>2倍根号2+根号5
4个回答
展开全部
平方 6+(2根42)+7>8+(2根号40)+5即证 13+(2根42)>13+(2根号40)故证 2根42>2根号40 即 根42>根号40 然后看不出来再平方42>40
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(√6+√7)^2-(2√2+√5)^2=(6+2√42+7)-(8+4√10+5)
=2√42-4√10
=2(√42-√40)>0
即(√6+√7)^2>(2√2+√5)^2
即√6+√7绝对值>2√2+√5绝对值
即√6+√7>2√2+√5
此题得证
=2√42-4√10
=2(√42-√40)>0
即(√6+√7)^2>(2√2+√5)^2
即√6+√7绝对值>2√2+√5绝对值
即√6+√7>2√2+√5
此题得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证:设题设成立,不等式两边同时平方,得:
13+2倍根号42>13+4倍根号10
不等式两边同时减去13,得:
2倍根号42>4倍根号10
不等式两边同时除以2,得:
根号42>2倍根号10
不等式两边同时平方,得:
42>40
题设成立。
13+2倍根号42>13+4倍根号10
不等式两边同时减去13,得:
2倍根号42>4倍根号10
不等式两边同时除以2,得:
根号42>2倍根号10
不等式两边同时平方,得:
42>40
题设成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明
易知,
√8+√7>√6+√5
1/(√8-√7)>1/(√6-√5)
√6-√5>√8-√7
√6+√7>√8+√5
即:√6+√7>(2√2)+√5
易知,
√8+√7>√6+√5
1/(√8-√7)>1/(√6-√5)
√6-√5>√8-√7
√6+√7>√8+√5
即:√6+√7>(2√2)+√5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询