已知:如图1,在正方形 ABCD和正方形BEFG 中,点 ABE在同一条直线上, P是线段 DF的中点,联结PA、PE .
(2)将图1中的正方形BEFG绕点B逆时针旋转,使它的对角线BF恰好与AB的延长线在同一条直线上,其他条件不变(如图2),你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. 展开
解:(1)线段PG与PC的位置关系是PG⊥PC;
PG/PC
=1;
(2)猜想:线段PG与PC的位置关系是PG⊥PC;
PG/PC
=
3
.
证明:如图2,延长GP交DC于点H,
∵P是线段DF的中点,
∴FP=DP,
由题意可知DC∥GF,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,
∴CG=CH,
∴△CHG是等腰三角形,
∴PG⊥PC,(三线合一)
又∵∠ABC=∠BEF=60°,
∴∠GCP=60°,
∴
PG/PC
=
3
;
(3)在(2)中得到的两个结论仍成立.
证明:如图3,延长GP到H,使PH=PG,
连接CH,CG,DH,
∵P是线段DF的中点,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
∵∠GFP+∠PFE=120°,∠PFE=∠PDC,
∴∠CDH=∠HDP+∠PDC=120°,
∵四边形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,点A、B、G又在一条直线上,
∴∠GBC=120°,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴
PG/
PC
=
3
.即PG=
3
PC.
点评:本题主要考查了正方形,菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.