2个回答
展开全部
解答:
△ABC中,
cosA=4/5, sinA=√(1-cos²A)=3/5, tanA=sinA/cosA=3/4
tanB=2,
cos²B=cos²B/(sin²B+cos²B)=1/(1+tan²B)=1/5
cosB=√5/5 sinB=2√5/5,
(1) sin(A-B)
=sinAcosB-cosAsinB
=(3/5)*(√5/5)-(4/5)*(2√5/5)
=-√5/5
(2) tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(2+3/4)/(1-2*3/4)
=(8+3)/(4-6)
=-11/2
△ABC中,
cosA=4/5, sinA=√(1-cos²A)=3/5, tanA=sinA/cosA=3/4
tanB=2,
cos²B=cos²B/(sin²B+cos²B)=1/(1+tan²B)=1/5
cosB=√5/5 sinB=2√5/5,
(1) sin(A-B)
=sinAcosB-cosAsinB
=(3/5)*(√5/5)-(4/5)*(2√5/5)
=-√5/5
(2) tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(2+3/4)/(1-2*3/4)
=(8+3)/(4-6)
=-11/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询