教授选出两个从2到9的数,把它们的和告诉学生甲,把它们的积告诉学生乙,让他们轮流猜这两个数 1。甲说

教授选出两个从2到9的数,把它们的和告诉学生甲,把它们的积告诉学生乙,让他们轮流猜这两个数1。甲说:“我猜不出”2。乙说:“我猜不出”3。甲说:“我猜到了”4。乙说:“我... 教授选出两个从2到9的数,把它们的和告诉学生甲,把它们的积告诉学生乙,让他们轮流猜这两个数
1。甲说:“我猜不出”
2。乙说:“我猜不出”
3。甲说:“我猜到了”
4。乙说:“我也猜到了”
问这两个数是多少
展开
 我来答
1234焊机
2017-07-26
知道答主
回答量:1
采纳率:0%
帮助的人:1070
展开全部
个人感觉答案应该不唯一,应该是3和4或3和6;
首先列出所有加和的可能性,甲说不知道证明甲的数字应该是6~15(包含6和15),列出所有乘积的可能性,乙说不知道证明他的数字是12、16、18、24、36这几个中的一个,甲根据乙提供的答案,可以得到10个重叠项,第二次甲说知道了证明和在这几个重叠项中是唯一的解,可得到和是7(3.4)9(3.6)12(6.6)13(4.9)这4项,乙也说知道了证明在这4种中积有唯一的解,所以应该是3和4或者3和6

这个是其他的答案 但是个人没懂为什么n>=8
3和4(可严格证明)
设两个数为n1,n2,n1>=n2,甲听到的数为n=n1+n2,乙听到的数为m=n1*n2
证明n1=3,n2=4是唯一解
证明:要证以上命题为真,不妨先证n=7
1)必要性:
i) n>5 是显然的,因为n<4不可能,n=4或者n=5甲都不可能回答不知道
ii) n>6 因为如果n=6的话,那么甲虽然不知道(不确定2+4还是3+3)但是无论是2,4还是3,3乙都不可能说不知道(m=8或者m=9的话乙说不知道是没有道理的)
iii) n<8 因为如果n>=8的话,就可以将n分解成 n=4+x 和 n=6+(x-2),那么m可以是4x也可以是6(x-2)而4x=6(x-2)的必要条件是x=6即n=10,那样n又可以分解成8+2,所以总之当n>=8时,n至少可以分解成两种不同的合数之和,这样乙说不知道的时候,甲就没有理由马上说知道。
以上证明了必要性
2)充分性
当n=7时,n可以分解成2+5或3+4
显然2+5不符合题
第五题:3和4(可严格证明)
设两个数为n1,n2,n1>=n2,甲听到的数为n=n1+n2,乙听到的数为m=n1*n2
证明n1=3,n2=4是唯一解
证明:要证以上命题为真,不妨先证n=7
1)必要性:
i) n>5 是显然的,因为n<4不可能,n=4或者n=5甲都不可能回答不知道
ii) n>6 因为如果n=6的话,那么甲虽然不知道(不确定2+4还是3+3)但是无论是2,4还是3,3乙都不可能说不知道(m=8或者m=9的话乙说不知道是没有道理的)
iii) n<8 因为如果n>=8的话,就可以将n分解成 n=4+x 和 n=6+(x-2),那么m可以是4x也可以是6(x-2)而4x=6(x-2)的必要条件是x=6即n=10,那样n又可以分解成8+2,所以总之当n>=8时,n至少可以分解成两种不同的合数之和,这样乙说不知道的时候,甲就没有理由马上说知道。
以上证明了必要性
2)充分性
当n=7时,n可以分解成2+5或3+4
显然2+5不符合题意,舍去,容易判断出3+4符合题意,m=12,证毕
于是得到n=7 m=12 n1=3 n2=4是唯一解。
意,舍去,容易判断出3+4符合题意,m=12,证毕
于是得到n=7 m=12 n1=3 n2=4是唯一解。
guazi316
2012-06-30 · TA获得超过865个赞
知道小有建树答主
回答量:446
采纳率:0%
帮助的人:338万
展开全部
应该是3和6
追问
答案唯一么?
追答
应该是的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式