设函数f(x)=sin(π/4x-π/6)-2cos^2π/8x+1 求: 20
展开全部
f(x)=sin(π/4x-π/6)-2cos^2π/8x+1
解: =sin(π/4x-π/6) -(2cos^2π/8x-1)
=√3/2 sinπ/4x - 1/2 cosπ/4x -cosπ/4x
=√3/2 sinπ/4x -3/2 cosπ/4x
=√3(1/2 sinπ/4x -√3/2 cosπ/4x)
=√3sin(π/4x-π/3)
所以,最小正周期为 8
f(x)的单调增区间为[8k-2/3,8k+10/3],单调减区间为[8k+10/3,8k+22/3],k属于整数
当x∈[2,4)时,x=10/3时,取得最大值√3,x=2时取得最小值√3/2。
所以,值域为[√3/2,√3]
(1/2 sinπ/4x -√3/2 cosπ/4x)
√=+-×/=
解: =sin(π/4x-π/6) -(2cos^2π/8x-1)
=√3/2 sinπ/4x - 1/2 cosπ/4x -cosπ/4x
=√3/2 sinπ/4x -3/2 cosπ/4x
=√3(1/2 sinπ/4x -√3/2 cosπ/4x)
=√3sin(π/4x-π/3)
所以,最小正周期为 8
f(x)的单调增区间为[8k-2/3,8k+10/3],单调减区间为[8k+10/3,8k+22/3],k属于整数
当x∈[2,4)时,x=10/3时,取得最大值√3,x=2时取得最小值√3/2。
所以,值域为[√3/2,√3]
(1/2 sinπ/4x -√3/2 cosπ/4x)
√=+-×/=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询