线性代数问题,设A=(1 2 2 2 1 2 2 2 1 )求A的特征值及对应的特征向量

一个人郭芮
高粉答主

推荐于2018-03-20 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84684

向TA提问 私信TA
展开全部
设矩阵A的特征值为λ
则A-λE=1-λ 2 2
2 1-λ 2
2 2 1-λ
令其行列式等于0,即
1-λ 2 2
2 1-λ 2
2 2 1-λ 第3行减去第2行

=
1-λ 2 2
2 1-λ 2
0 1+λ -1-λ 第2行加上第3行
=
1-λ 4 2
2 3-λ 2
0 0 -1-λ 按第3行展开
=(-1-λ) [(1-λ)(3-λ) -8]
=0

化简得到:(-1-λ)(λ+1)(λ-5)=0,
所以方阵A的特征值为:λ1=λ2= -1,λ3=5

当λ= -1时,
A+E=(2,2,2 ~ (1,1,1
2,2,2 0,0,0
2,2,2) 0,0,0)
得到其两个基础解系
p1= 1 p2= 1
-1 0
0 -1
当λ=5时,
A-5E=( -4,2,2 ~ (1,0,-1
2,-4,2 0,1,-1
2,2,-4) 0,0,0)
得到其基础解系为
p3= 1
1
1

所以这个三阶矩阵的特征值为:λ1=λ2= -1,λ3=5
其对应的特征向量分别是
p1=1 p2=1 p3=1
-1 0 1
0 -1 1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式