lim x--->无穷[(x+c)/(x -c)]^x =lim x--->无穷[1+2c/(x -
limx--->无穷[(x+c)/(x-c)]^x=limx--->无穷[1+2c/(x-c)]^x=e^(2c)请问这个答案是怎么得来的,请给出详细解答,谢谢...
lim x--->无穷[(x+c)/(x -c)]^x =lim x--->无穷[1+2c/(x -c )]^x =e^(2c) 请问这个答案是怎么得来的,请给出详细解答,谢谢
展开
2012-07-05
展开全部
lim(x→∞) [(x + c)/(x - c)]^x
= lim(x→∞) [((x - c) + 2c)/(x - c)]^x
= lim(x→∞) [1 + 2c/(x - c)]^x
= {lim(x→∞) [1 + 1/((x - c)/(2c))]^(x - c)/(2c)} ^ lim(x→∞)[(2c)/(x - c) * x]
令t = (x - c)/(2c),x→∞时t→∞
= {lim(t→∞) (1 + 1/t)^t} ^ 2c*lim(x→∞) x/(x - c)
= e^ 2c*lim(x→∞) 1/(1 - c/x)
= e^ 2c*1
= e^(2c)
= lim(x→∞) [((x - c) + 2c)/(x - c)]^x
= lim(x→∞) [1 + 2c/(x - c)]^x
= {lim(x→∞) [1 + 1/((x - c)/(2c))]^(x - c)/(2c)} ^ lim(x→∞)[(2c)/(x - c) * x]
令t = (x - c)/(2c),x→∞时t→∞
= {lim(t→∞) (1 + 1/t)^t} ^ 2c*lim(x→∞) x/(x - c)
= e^ 2c*lim(x→∞) 1/(1 - c/x)
= e^ 2c*1
= e^(2c)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
buxiaode
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询