已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1),
(1)求{an}的通项公式;(2)令Tn=(45)nSn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm,若存在,求m的值;若不存在,说明理由....
(1)求{an}的通项公式;
(2)令Tn=(45
)nSn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm,若存在,求m的值;若不存在,说明理由. 展开
(2)令Tn=(45
)nSn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm,若存在,求m的值;若不存在,说明理由. 展开
1个回答
展开全部
na(n+1)=Sn+n(n+1) [注:a、S后面的(n+1)为下标,下同]
而a(n+1)=S(n+1) -Sn代入上式并整理得
nS(n+1) -(n+1)Sn=n(n+1)
两边同时除以n(n+1)
S(n+1) /(n+1) -Sn /n=1
故{Sn /n}为等差数列,公差d=1,首项a1/1=2,故Sn/n =2+n-1=n+1
Sn=n(n+1)
an=Sn -S(n-1)=2n 把n=1代入验证,满足!
所以:an=2n
(2)看不清Tn后面的式子是什么
而a(n+1)=S(n+1) -Sn代入上式并整理得
nS(n+1) -(n+1)Sn=n(n+1)
两边同时除以n(n+1)
S(n+1) /(n+1) -Sn /n=1
故{Sn /n}为等差数列,公差d=1,首项a1/1=2,故Sn/n =2+n-1=n+1
Sn=n(n+1)
an=Sn -S(n-1)=2n 把n=1代入验证,满足!
所以:an=2n
(2)看不清Tn后面的式子是什么
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询