已知数列{an}的前n项和为Sn,且a1=0,对任意n∈N*,都有nan+1=Sn+n(n+1).(1)求数列{an}的通项公式;
已知数列{an}的前n项和为Sn,且a1=0,对任意n∈N*,都有nan+1=Sn+n(n+1).(1)求数列{an}的通项公式;(2)若数列{bn}满足an+log2n...
已知数列{an}的前n项和为Sn,且a1=0,对任意n∈N*,都有nan+1=Sn+n(n+1).(1)求数列{an}的通项公式;(2)若数列{bn}满足an+log2n=log2bn,求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
(本小题满分14分)
解:(1)当n≥2时,nan+1=Sn+n(n+1),(n-1)an=Sn-1+n(n-1),…(1分)
两式相减得nan+1-(n-1)an=Sn-Sn-1+n(n+1)-n(n-1),…(3分)
即nan+1-(n-1)an=an+2n,得an+1-an=2.…(5分)
当n=1时,1×a2=S1+1×2,即a2-a1=2.…(6分)
∴数列{an}是以a1=0为首项,公差为2的等差数列.
∴an=2(n-1)=2n-2.…(7分)
(2)∵an=log2n=log2bn,
∴bn=n?2an=n?22n-2=n?4n-1.…(9分)
∴Tn=40+2×4+3×42+…+n?4n?1,①
4Tn=4+2×42+3×43+…+n?4n,②…(11分)
①-②得-3Tn=40+4+42+…+4n-1-n?4n
=
?n?4n
=
.…(13分)
∴Tn=
[(3n?1)?4n+1].…(14分)
解:(1)当n≥2时,nan+1=Sn+n(n+1),(n-1)an=Sn-1+n(n-1),…(1分)
两式相减得nan+1-(n-1)an=Sn-Sn-1+n(n+1)-n(n-1),…(3分)
即nan+1-(n-1)an=an+2n,得an+1-an=2.…(5分)
当n=1时,1×a2=S1+1×2,即a2-a1=2.…(6分)
∴数列{an}是以a1=0为首项,公差为2的等差数列.
∴an=2(n-1)=2n-2.…(7分)
(2)∵an=log2n=log2bn,
∴bn=n?2an=n?22n-2=n?4n-1.…(9分)
∴Tn=40+2×4+3×42+…+n?4n?1,①
4Tn=4+2×42+3×43+…+n?4n,②…(11分)
①-②得-3Tn=40+4+42+…+4n-1-n?4n
=
1?4n |
1?4 |
=
(1?3n)?4n?1 |
3 |
∴Tn=
1 |
9 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询