2012年兰州中考数学第13题怎么做 10
13.(2012•兰州)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( ) A.130° B.120° C.110° D.100°
考点: 轴对称-最短路线问题。
分析: 根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.
解答: 解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″ 即为△AMN的周长最小值.作DA延长线AH, ∵∠EAB=120°, ∴∠HAA′=60°, ∴∠AA′M+∠A″=∠HAA′=60°, ∵∠MA′A=∠MAA′,∠NAD=∠A″, 且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM, ∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°, 故选:B.
点评: 此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.