已知数列中,a1=1,前n项和sn=[(n+2)*an]/3,求{an}的通项公式
4个回答
展开全部
3s_n=(n+2)*a_n, 3s_{n-1}=(n+1)*a_{n-1},两式相减,得3a_n=(n+2)a_n-(n+1)a_{n-1},整理得a_n/a_{n-1}=(n+1)/(n-1), 即a_k/a_{k-1})=(k+1)/(k-1),取k=2到n,再把这些等式相乘得a_n=(n+1)n/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当n≥2,an=Sn-Sn-1=[(n+2)*an]/3-[(n+1)*an-1]/3
an/an-1=(n+1)/(n-1)
(a2/a01)*(a3/a2)……*(an-1/an-2)*(an/an-1)=an
=(3/1)*(4/2)……*[n/(n-2)]*(n+1)/(n-1)=
=n(n+1)/2
当n=1,S1=a1=1符合an
所以an=n(n+1)/2 n≥1
an/an-1=(n+1)/(n-1)
(a2/a01)*(a3/a2)……*(an-1/an-2)*(an/an-1)=an
=(3/1)*(4/2)……*[n/(n-2)]*(n+1)/(n-1)=
=n(n+1)/2
当n=1,S1=a1=1符合an
所以an=n(n+1)/2 n≥1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
顶
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询