一道数列题,求高手解答

已知数列{An}的前n项的和Sn=n^+2n,数列{Bn}是正等比数列,且满足A1=2乘B2,B3(A3-A1)=B11.求数列{An}和{Bn}的通项公式2.记Cn=A... 已知数列{An}的前n项的和Sn=n^+2n,数列{Bn}是正等比数列,且满足A1=2乘B2,B3(A3-A1)=B1
1.求数列{An}和{Bn}的通项公式
2.记Cn=AnBn 求数列{Cn}的前n项和。
展开
 我来答
chenzuilangzi
2012-07-08 · TA获得超过2.1万个赞
知道大有可为答主
回答量:1987
采纳率:0%
帮助的人:1136万
展开全部
1、
a1=S1=3
Sn=n²+2n
S(n-1)=(n-1)² + 2(n-1)
两式相减,得:
Sn - S(n-1)=n²-(n-1)²+2n-2(n-1) = 2n+1,n≥2
即:an=2n+1,n≥2
把a1=1代入也满足
∴an = 2n + 1

∵a1 = 2b2
∴b2 = 3/2
∵b3(a3-a1)=b1
∴b3/b1=1/4
即:q²=1/4
∵数列{Bn}是正等比数列
∴q>0, 即:q=1/2
∴b1=b2/q=3
∴bn=3×(1/2)^(n-1)

2、
Cn=an·bn=(2n+1)×3×(1/2)^(n-1)
设数列{Cn}的前n项和为Tn
Tn=3×3 + 5×3×(1/2) +7×3×(1/2)² + …… +(2n+1)×3×(1/2)^(n-1)
(1/2)Tn= 3×3×(1/2) +5×3×(1/2)² + …… +(2n-1)×3×(1/2)^(n-1)+(2n+1)×3×(1/2)^n
两式相减,得:
(1/2) Tn = 3×3 + 2×3×(1/2)+2×3×(1/2)²+……+2×3×(1/2)^(n-1) - (2n+1)×3×(1/2)^n
= 9 + 6[(1/2)+(1/2)²+(1/2)³+……+(1/2)^(n-1)] - 3(2n+1)(1/2)^n
= 9 + 6×(1/2)×[1 - (1/2)^(n-1)]/[1-(1/2)] - 3(2n+1)(1/2)^n
= 15 - 6×(1/2)^(n-1) - 3(2n+1)(1/2)^n
= 15 - 12×(1/2)^n - 3(2n+1)(1/2)^n
= 15 - (6n+15)(1/2)^n
∴Tn = 30 - (12n+30)(1/2)^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式