小学奥数,巧妙估算 已知s=1÷(1\33+1\34+1\35+……+1\40),则s的整数部分为( )
4个回答
展开全部
1\33+1\34+1\35+……+1\40>1/40+1/40+...+1/40=8/40
1\33+1\34+1\35+……+1\40<1/32+1/32+...+1/32=8/32
1/(8/32)<1÷(1\33+1\34+1\35+……+1\40)<1/(8/40)
32/8<1÷(1\33+1\34+1\35+……+1\40)<40/8
4<1÷(1\33+1\34+1\35+……+1\40)<5
因此s的整数部分为4
1\33+1\34+1\35+……+1\40<1/32+1/32+...+1/32=8/32
1/(8/32)<1÷(1\33+1\34+1\35+……+1\40)<1/(8/40)
32/8<1÷(1\33+1\34+1\35+……+1\40)<40/8
4<1÷(1\33+1\34+1\35+……+1\40)<5
因此s的整数部分为4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1\33+1\34+1\35+……+1\40=(1/33+1/40+1/34+1/39+1/35+1/38+1/36+1/37)
=73[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)]
4/(33*40)>=[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)]>=4/(36*37)
所以73*4/(33*40)>=73[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)]>=73*4/(36*37)
s=1÷(1\33+1\34+1\35+……+1\40)=73[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)],
所以36*37/(4*73)>=s>=33*40/(4*73)
即4.5616438356164383561643835616438>=s>=4.5205479452054794520547945205479
所以s的整数部分为(4)
=73[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)]
4/(33*40)>=[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)]>=4/(36*37)
所以73*4/(33*40)>=73[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)]>=73*4/(36*37)
s=1÷(1\33+1\34+1\35+……+1\40)=73[1/(33*40)+1/(34*39)+1/(35*38)+1/(36*37)],
所以36*37/(4*73)>=s>=33*40/(4*73)
即4.5616438356164383561643835616438>=s>=4.5205479452054794520547945205479
所以s的整数部分为(4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
40-33+1=8
33/8<s<40/8=5
所以
整数部分=4
33/8<s<40/8=5
所以
整数部分=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |