2个回答
展开全部
当n=1时,S1=a1=1,
又:S(n+1)=Sn+2an,即:S(n+1)-Sn=2an,得:
a(n+1)=2an
所以,[a(n+1)]/[an]=2=常数,则数列{an}是以a1=1为首项、以q=2为公比的等比数列,则:
an=2^(n-1)
则:
Sn=2^n-1,Sm=2^m-1,S(n+m)=2^(n+m)-1
Sn+Sm=[2^n+2^m]-2
[Sn+Sm]-S(n+m)
=[2^n+2^m-2^(n+m)]-1
=-[2^n-1]×[2^m-1]<0
则:Sn+Sm<S(n+m)
又:S(n+1)=Sn+2an,即:S(n+1)-Sn=2an,得:
a(n+1)=2an
所以,[a(n+1)]/[an]=2=常数,则数列{an}是以a1=1为首项、以q=2为公比的等比数列,则:
an=2^(n-1)
则:
Sn=2^n-1,Sm=2^m-1,S(n+m)=2^(n+m)-1
Sn+Sm=[2^n+2^m]-2
[Sn+Sm]-S(n+m)
=[2^n+2^m-2^(n+m)]-1
=-[2^n-1]×[2^m-1]<0
则:Sn+Sm<S(n+m)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询