关于数学归纳法证明题……的解题思路,具体问题如下,以一题为例
例:用数学归纳法证明:对于整数n大于等于0,An=11n+2+122n+1能够被133整除。答案如下:当n=0时,A0=11²+12=133,等式成立;设当n=...
例:用数学归纳法证明:对于整数n大于等于0,An=11 n+2+ 12 2n+1能够被133整除。
答案如下:
当n=0时,A0=11²+12=133,等式成立;
设当n=k时,Ak能被133整除;
那么当n=k+1时,Ak+1=11k+3+122k+3=11×11k+2=122×122k+1=11×11k+2+11×122k+1+(122_11)×122k+1=11×(11k+2+122k+1)+133×122k+1;
所以等式成立。
而我的疑问是,这一步:11×11k+2+11×122k+1+(122_11)×122k+1,这一步里添加了一项,但在同时添加的(122—11)刚好得到133,这到底是怎么回事?出题人的思路是怎样的? 展开
答案如下:
当n=0时,A0=11²+12=133,等式成立;
设当n=k时,Ak能被133整除;
那么当n=k+1时,Ak+1=11k+3+122k+3=11×11k+2=122×122k+1=11×11k+2+11×122k+1+(122_11)×122k+1=11×(11k+2+122k+1)+133×122k+1;
所以等式成立。
而我的疑问是,这一步:11×11k+2+11×122k+1+(122_11)×122k+1,这一步里添加了一项,但在同时添加的(122—11)刚好得到133,这到底是怎么回事?出题人的思路是怎样的? 展开
3个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询