如图,已知等边△ABC,D在BC延长线上,CE平分∠ACD,且∠ADE=60°,求证:△ADE是等边三角形.
展开全部
证明:∵△ABC为等边三角形,
∴∠B=∠ACB=60°,AB=AC,
即∠ACD=120°,
∵CE平分∠ACD,
∴∠1=∠2=60°,
在△ABD和△ACE中,
AB=AC∠B=∠1BD=CE,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE,
又∠BAC=60°,
∴∠DAE=60°,
∴△ADE为等边三角形.
∴∠B=∠ACB=60°,AB=AC,
即∠ACD=120°,
∵CE平分∠ACD,
∴∠1=∠2=60°,
在△ABD和△ACE中,
AB=AC∠B=∠1BD=CE,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE,
又∠BAC=60°,
∴∠DAE=60°,
∴△ADE为等边三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-07-12
展开全部
图呢???
追问
怎么给图啊..
追答
yun
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询