![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
三角形ABC中sinA/2sinB/2sinC/2=1/8,判断三角形形状
2个回答
展开全部
法1(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2
=sinA/2((sinA/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2((cos(B+C)/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2*cos(B+C)/2+(1-cosB)/2+(1-cosC)/2(积化和差)
=cos(B+C)/2*cos(B+C)/2+1-cos(B+C)/2*cos(B+C)/2
=1故(sinA/2)^2+(sinB/2)^2+(sinC/2)^2取最小值sinA/2sinB/2sinC/2最大值
(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2>=3(3次√(sinA/2sinB/2sinC/2)^2)+2sinA/2sinB/2sinC/2<=1 此时sinA/2=sinB/2=sinC/2
sinA/2sinB/2sinC/2取得最大值1/8故A=B=C等边三角形
法2.
三角形的内切圆半径为r,外接圆半径为R,半周长为p(=(a+b+c)/2),面积为S:
r=4R*sin(A/2)*sin(B/2)*sin(C/2)
∴sin(A/2)*sin(B/2)*sin(C/2)=r/(4R)
r=S/p, R=abc/(4S),S^2=p(p-a)(p-b)(p-c)
带入这些公式,
sin(A/2)*sin(B/2)*sin(C/2)=r/(4R)=S^2/pabc=(p-a)(p-b)(p-c)/(abc)=1/8*(b+c-a)*(a+c-b)*(a+b-c)/abc
(b+c-a)+(a+c-b)+(a+b-c)=a+b+c
如果分母abc为定值,a+b+c有最小值,当a+b+c确定以后,(b+c-a)*(a+c-b)*(a+b-c)有最大值。
∴sin(A/2)*sin(B/2)*sin(C/2)<=1/8 ,当且仅当a=b=c时,取等号
证明:设I为三角形ABC内接圆圆心
那么 AI是三角形内角A的角平分线,所以AI=R/sin(A/2).
又 BC=Rcotan(B/2)+Rcotan(C/2)
根据正弦定理:BC/sinA=2r BC=2rsinA,即:
2rsinA=R[cotan(B/2)+cotan(C/2)]
2rsinA=R[sin[(B+C)/2]]/[sin(B/2)sin(C/2)]
又 sinA=2sin(A/2)cos(A/2)
从而 4rsin(A/2)cos(A/2)=R[sin(90-A/2)]/[sin(B/2)sin(C/2)]
4rsin(A/2)=R/[sin(B/2)sin(C/2)]
∴ R=4r*sin(A/2)sin(B/2)sin(C/2) 此法知道三角形公式多
=sinA/2((sinA/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2((cos(B+C)/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2*cos(B+C)/2+(1-cosB)/2+(1-cosC)/2(积化和差)
=cos(B+C)/2*cos(B+C)/2+1-cos(B+C)/2*cos(B+C)/2
=1故(sinA/2)^2+(sinB/2)^2+(sinC/2)^2取最小值sinA/2sinB/2sinC/2最大值
(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2>=3(3次√(sinA/2sinB/2sinC/2)^2)+2sinA/2sinB/2sinC/2<=1 此时sinA/2=sinB/2=sinC/2
sinA/2sinB/2sinC/2取得最大值1/8故A=B=C等边三角形
法2.
三角形的内切圆半径为r,外接圆半径为R,半周长为p(=(a+b+c)/2),面积为S:
r=4R*sin(A/2)*sin(B/2)*sin(C/2)
∴sin(A/2)*sin(B/2)*sin(C/2)=r/(4R)
r=S/p, R=abc/(4S),S^2=p(p-a)(p-b)(p-c)
带入这些公式,
sin(A/2)*sin(B/2)*sin(C/2)=r/(4R)=S^2/pabc=(p-a)(p-b)(p-c)/(abc)=1/8*(b+c-a)*(a+c-b)*(a+b-c)/abc
(b+c-a)+(a+c-b)+(a+b-c)=a+b+c
如果分母abc为定值,a+b+c有最小值,当a+b+c确定以后,(b+c-a)*(a+c-b)*(a+b-c)有最大值。
∴sin(A/2)*sin(B/2)*sin(C/2)<=1/8 ,当且仅当a=b=c时,取等号
证明:设I为三角形ABC内接圆圆心
那么 AI是三角形内角A的角平分线,所以AI=R/sin(A/2).
又 BC=Rcotan(B/2)+Rcotan(C/2)
根据正弦定理:BC/sinA=2r BC=2rsinA,即:
2rsinA=R[cotan(B/2)+cotan(C/2)]
2rsinA=R[sin[(B+C)/2]]/[sin(B/2)sin(C/2)]
又 sinA=2sin(A/2)cos(A/2)
从而 4rsin(A/2)cos(A/2)=R[sin(90-A/2)]/[sin(B/2)sin(C/2)]
4rsin(A/2)=R/[sin(B/2)sin(C/2)]
∴ R=4r*sin(A/2)sin(B/2)sin(C/2) 此法知道三角形公式多
2012-07-14
展开全部
等腰钝角三角形 大角120度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询