已知:D是AB中点,∠ACB=90°,求证:CD=1/2AB 20
展开全部
证明:延长CD到点E,使DE=CD
∵D是AB中点
∴AD=BD
∵CD=DE
∴平行四边形ACBE
∵∠ACB=90°
∴矩形ACBE
∴AB=CE
∵CE=CD+DE=2CD
∴2CD=AB
∴CD=1/2AB
∵D是AB中点
∴AD=BD
∵CD=DE
∴平行四边形ACBE
∵∠ACB=90°
∴矩形ACBE
∴AB=CE
∵CE=CD+DE=2CD
∴2CD=AB
∴CD=1/2AB
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长CD到E,连接AE,BE,因为,∠ACB=90°,所以四边形是矩形,
所以AB=CE,
所以CD=1/2AB
所以AB=CE,
所以CD=1/2AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵D是AB中点
∴AD=BD
∵CD=DE
∴平行四边形ACBE
∵∠ACB=90°
∴矩形ACBE
∴AB=CE
∵CE=CD+DE=2CD
∴2CD=AB
∴CD=1/2AB
∴AD=BD
∵CD=DE
∴平行四边形ACBE
∵∠ACB=90°
∴矩形ACBE
∴AB=CE
∵CE=CD+DE=2CD
∴2CD=AB
∴CD=1/2AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用圆证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询