已知an=﹙2n-1)·3的n-1次方 求和 错位相减法

百度网友0117f73
2012-07-16 · TA获得超过4.7万个赞
知道大有可为答主
回答量:8088
采纳率:94%
帮助的人:4872万
展开全部
Sn=a1+a2+a3……+an
=1+3×3+5×3²+……+(2n-1)×3^(n-1)
3Sn= 3+3×3²+……+(2n-3)×3^(n-1)+(2n-1)×3^n
上面两式相减得:
-2Sn=1+2×(3+3²+……+3^(n-1))-(2n-1)×3^n
=1+2×3×(1-3^(n-1))/(1-3)-(2n-1)×3^n
=1-3+3^n-(2n-1)×3^n
=-2-(2n-2)×3^n
所以Sn=(n-1)×3^n+1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式