数学的二元二次方程怎么解,公式是怎样的?
4个回答
展开全部
1.分解因式法 (可解部分一元二次方程)
因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
如
1.解方程:x^2+2x+1=0
解:利用完全平方公式因式解得:(x+1﹚^2=0
解得:x1= x2=-1
2.解方程x(x+1)-3(x+1)=0
解:利用提公因式法解得:(x-3)(x+1)=0
即 x-3=0 或 x+1=0
∴ x1=3,x2=-1
3.解方程x^2-4=0
解:(x+2)(x-2)=0
x+2=0或x-2=0
∴ x1=-2,x2= 2
十字相乘法公式:
x^2+(p+q)x+pq=(x+p)(x+q)
例:
1. ab+b^2+a-b- 2
=ab+a+b^2-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
2.公式法 (可解全部一元二次方程)
求根公式
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.配方法 (可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
最后 如果是你写的a²+2a-3=0 我比较习惯用分解因式法
先写成(a-3)(a+1)=0 解得:a=3或-1
因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
如
1.解方程:x^2+2x+1=0
解:利用完全平方公式因式解得:(x+1﹚^2=0
解得:x1= x2=-1
2.解方程x(x+1)-3(x+1)=0
解:利用提公因式法解得:(x-3)(x+1)=0
即 x-3=0 或 x+1=0
∴ x1=3,x2=-1
3.解方程x^2-4=0
解:(x+2)(x-2)=0
x+2=0或x-2=0
∴ x1=-2,x2= 2
十字相乘法公式:
x^2+(p+q)x+pq=(x+p)(x+q)
例:
1. ab+b^2+a-b- 2
=ab+a+b^2-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
2.公式法 (可解全部一元二次方程)
求根公式
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.配方法 (可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
最后 如果是你写的a²+2a-3=0 我比较习惯用分解因式法
先写成(a-3)(a+1)=0 解得:a=3或-1
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
a2+2a-3=(a+3)(a-1)=0
a=-3或者a=1
用的是十字相乘法
不会好好看看
a=-3或者a=1
用的是十字相乘法
不会好好看看
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
同学 你写的是一元二次 而且不是方程 右边是不是还有一个等于零呢 如果是的话 可以这样解 (a+3)(a-1)=0 得a=-3或a=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询