在直角坐标系xoy中,已知中心在原点,离心率为1/2的椭圆E的一个焦点为圆C:x^2+y^2-4
在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的...
在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值. 展开
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值. 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询