在直角坐标系xoy中,已知中心在原点,离心率为1/2的椭圆E的一个焦点为圆C:x^2+y^2-4

在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的... 在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.
展开
luckybom123
2012-07-20
知道答主
回答量:8
采纳率:0%
帮助的人:4.9万
展开全部
(1)设M(x,y)则M到直线的距离为x+2,M到C2距离为根号(x-5)2+y2 -3
两式相等得出C1

(2)得P(-4,y0),由点斜式设切线为Y-Y0=k(x+4),再由距离公式得出k与Y0的关系——太复杂了
追问
谢谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式