在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC 求sinB+sinC的最大值
2个回答
展开全部
∵sinA/a=sinB/b=sinC/c=1/2R
∴2a^2=(2b+c)b+(2c+b)c
=2b^2+2c^2+2bc
∴b^2+c^2-a^2=-bc
即cosA=(b^2+c^2-a^2)/2bc=-1/2
A=120°
∴B+C=60°
sinB+sinC=sinB+sin(60-B)
=sinB+√3/2*cosB-1/2*sinB
=√3/2*cosB+1/2*sinB
=sin(B+60)
当B=30°时,sinB+sinC最大取1
∴2a^2=(2b+c)b+(2c+b)c
=2b^2+2c^2+2bc
∴b^2+c^2-a^2=-bc
即cosA=(b^2+c^2-a^2)/2bc=-1/2
A=120°
∴B+C=60°
sinB+sinC=sinB+sin(60-B)
=sinB+√3/2*cosB-1/2*sinB
=√3/2*cosB+1/2*sinB
=sin(B+60)
当B=30°时,sinB+sinC最大取1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询