线性方程组中 基础解系和解向量之间的关系是什么?
如果基础解系有两个解向量组成,那么下面的N1,N2,都是四个向量构成的,还是不明白,糊涂。 展开
基础解系是齐次线性方程组的解中的一些特殊解,这些解能表示出所有解,并且个数最少。解向量就是方程组的解。
x1,x2不是基础解系,基础解析必然和原始方程中x的分量个数一样,x1,x2只是用于解出基础解系的中间变量而已。n1,n2才是基础解系。
所有解向量(个数无限)都可以由基础解系线性表示。
解向量的极大线性无关组就是基础解系。
基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。
如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。
扩展资料:
如果 元齐次线性方程组 系数矩阵的秩 ,则解空间 的基础解系存在,且每个基础解系恰有 个解向量。
对于一个方程组,有无穷多组的解来说,最基础的,不用乘系数的那组方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)......等均符合方程的解,则系数K为1,2,3,4.....等,因此(1,2,3)就为方程组的基础解系。
A是n阶实对称矩阵,假如r(A)=1.则它的特征值为t1=a11+a22+...+ann,t2=t3=...tn=0;对应于t1的特征向量为b1,t2~tn的分别为b2~bn。
此时,Ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全为零。由于:Ax=0Ax=0*B,B为A的特征向量,对应一个特征值的特征向量写成通解的形式是乘上ki并加到一起。这是基础解系和通解的关系。
基础解系是齐次线性方程组的解中的一些特殊解,这些解能表示出所有解,并且个数最少。解向量就是方程组的解。
x1,x2不是基础解系,基础解析必然和原始方程中x的分量个数一样,x1,x2只是用于解出基础解系的中间变量而已。n1,n2才是基础解系。
所有解向量(个数无限)都可以由基础解系线性表示。
解向量的极大线性无关组就是基础解系。
基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。
如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。
扩展资料
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫线性化。因为线性的独特属性,在同类方程中对线性函数的解决有叠加作用。
线性方程在应用数学中有重要规律。使用它们建立模型很容易,而且在某些情况下可以假设变量的变动非常小,这样许多非线性方程就转化为线性方程。
与微分的联系:
所以,线性函数并无驻点,即没有极大值和极小值,且线性函数的斜率是未知数x 的系数。
参考资料来源:百度百科-线性方程
所有解向量(个数无限)都可以由基础解系线性表示
解向量的极大线性无关组就是基础解系
基础解系是齐次线性方程组的解中的一些特殊解,这些解能表示出所有解,并且个数最少。解向量就是方程组的解。
x1,x2不是基础解系,基础解析必然和原始方程中x的分量个数一样,x1,x2只是用于解出基础解系的中间变量而已。n1,n2才是基础解系。
所有解向量(个数无限)都可以由基础解系线性表示。
解向量的极大线性无关组就是基础解系。
基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。
如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。
扩展资料
线性方程组求解步骤
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
1、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;
若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。