(cosx/2)/根号(1+sinx)+(sinx/2)/根号(1-sinx) x∈(3π/3,2π)
2个回答
展开全部
x∈(3π/2,2π)
x/2∈(3π/4,π)
(cosx/2)/根号(1+sinx)+(sinx/2)/根号(1-sinx)
=[(cosx/2)√(1-sinx)+(sinx/2)√(1+sinx)]/√[(1-sinx)(1+sinx)]
=[cosx/2*|sinx/2-cosx/2|+sinx/2*|sinx/2+cosx/2|]/|cosx|
=[cosx/2*(sinx/2-cosx/2)-sinx/2*(sinx/2+cosx/2)]/(cosx)
=[-cos²x/2-sin²x/2]/cosx
=-1/cosx
x/2∈(3π/4,π)
(cosx/2)/根号(1+sinx)+(sinx/2)/根号(1-sinx)
=[(cosx/2)√(1-sinx)+(sinx/2)√(1+sinx)]/√[(1-sinx)(1+sinx)]
=[cosx/2*|sinx/2-cosx/2|+sinx/2*|sinx/2+cosx/2|]/|cosx|
=[cosx/2*(sinx/2-cosx/2)-sinx/2*(sinx/2+cosx/2)]/(cosx)
=[-cos²x/2-sin²x/2]/cosx
=-1/cosx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询