求旋转椭球面3x^2+y^2+z^2=16上点(-1,-2,3)处的切平面方程和法线方程。
求旋转椭球面3x^2+y^2+z^2=16上点(-1,-2,3)处的切平面方程和法线方程。求详细过程~~...
求旋转椭球面3x^2+y^2+z^2=16上点(-1,-2,3)处的切平面方程和法线方程。求详细过程~~
展开
2个回答
展开全部
解:设F=3x^2+y^2+z^2-16,则:F'x=3x,F'y=2y,F'z=2z,F'在点(0,2,2)处的偏导数值辨别为:
0,4,4。在(0,2,2)处的切平面方程为:(y-2)+(z-2)=0,xoy平面方程为:z=0
以是:cosθ=(0+0+1)/{√(0+1+1)*√(0+0+1)}=1/√2
假如是(2,0,2),则修正为:
设F=3x^2+y^2+z^2-16,则:F'x=3x,F'y=2y,F'z=2z,F'在点(2,0,2)处的偏导数值辨别为:
6,0,4。在(0,2,2)处的切平面方程为:3(x-2)+2(z-2)=0,xoy平面方程为:z=0
以是:cosθ=(0+0+2)/{√(9+0+4)*√(0+0+1)}=1/√13
类型相似
这样可以么?
0,4,4。在(0,2,2)处的切平面方程为:(y-2)+(z-2)=0,xoy平面方程为:z=0
以是:cosθ=(0+0+1)/{√(0+1+1)*√(0+0+1)}=1/√2
假如是(2,0,2),则修正为:
设F=3x^2+y^2+z^2-16,则:F'x=3x,F'y=2y,F'z=2z,F'在点(2,0,2)处的偏导数值辨别为:
6,0,4。在(0,2,2)处的切平面方程为:3(x-2)+2(z-2)=0,xoy平面方程为:z=0
以是:cosθ=(0+0+2)/{√(9+0+4)*√(0+0+1)}=1/√13
类型相似
这样可以么?
追问
我看到这道题了,但题目不一样啊T T...F'在点(-1,-2,-3)处的法向量求出来为(-6,-4,6)之后呢?切平面方程和法线方程怎么写?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |