高一数学三角函数问题
若sin²(x+(5π/12))-sin²(x-(5π/12))=-(根号3)/4,且x∈(3π/4,π)则tanx=?求详细过程...
若sin²(x+(5π/12))-sin²(x-(5π/12))=-(根号3)/4,且x∈(3π/4,π)则tanx=?
求详细过程 展开
求详细过程 展开
4个回答
展开全部
∵sin²(x+(5π/12))=1/2[1-cos(2x+5π/6)]
sin²(x-(5π/12))=1/2[1-cos(2x-5π/6)] (降幂公式)
∴sin²(x+(5π/12))-sin²(x-(5π/12))
=1/2[cos(2x-5π/6)-cos(2x+5π/6)]
=1/2[cos2xcos5π/6+sin2xsin5π/6-(cos2xcos5π/6-sin2xsin5π/6)]
=1/2[ 2sin2xsin5π/6]=1/2*sin2x
∵sin²(x+(5π/12))-sin²(x-(5π/12))==-√3/4
∴1/2*sin2x=-√3/4 ∴sin2x=-√3/2
∵x∈(3π/4,π)∴2x∈(3π/2,2π)
∴2x=5π/3 ∴x=5π/6
∴tanx=tan5π/6=-√3/3
sin²(x-(5π/12))=1/2[1-cos(2x-5π/6)] (降幂公式)
∴sin²(x+(5π/12))-sin²(x-(5π/12))
=1/2[cos(2x-5π/6)-cos(2x+5π/6)]
=1/2[cos2xcos5π/6+sin2xsin5π/6-(cos2xcos5π/6-sin2xsin5π/6)]
=1/2[ 2sin2xsin5π/6]=1/2*sin2x
∵sin²(x+(5π/12))-sin²(x-(5π/12))==-√3/4
∴1/2*sin2x=-√3/4 ∴sin2x=-√3/2
∵x∈(3π/4,π)∴2x∈(3π/2,2π)
∴2x=5π/3 ∴x=5π/6
∴tanx=tan5π/6=-√3/3
展开全部
1、利用sin²(x+(5π/12)=0.5(1-cos2(x+(5π/12)),另一个也把平方去掉;
2、sin(A+B)=sinAcosB+cosBsinA
3、上式会等于2sin2Xcos(150度)=-(根号3)/4
4、cos(150度)可求吧,上式可求得。
因为有很多数学公式,你自己在本子上写写哈。希望对你有帮助
2、sin(A+B)=sinAcosB+cosBsinA
3、上式会等于2sin2Xcos(150度)=-(根号3)/4
4、cos(150度)可求吧,上式可求得。
因为有很多数学公式,你自己在本子上写写哈。希望对你有帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin²(x+(5π/12))-sin²(x-(5π/12)利用平方差公式和两个三角函数式子和的定理化简
=(sin(x+(5π/12))+sin(x-(5π/12))(sin(x+(5π/12))-sin(x-(5π/12))
=4sin(x)cos(5π/12)cosXsin(5π/12)
=1/2sin(2X)=-√3/4
sin(2x)=-√3/2
2tgx/(1+tg²x)=-√3/2
解得:tgx=-√3/3或tgx=-2√3
=(sin(x+(5π/12))+sin(x-(5π/12))(sin(x+(5π/12))-sin(x-(5π/12))
=4sin(x)cos(5π/12)cosXsin(5π/12)
=1/2sin(2X)=-√3/4
sin(2x)=-√3/2
2tgx/(1+tg²x)=-√3/2
解得:tgx=-√3/3或tgx=-2√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵sin²[x+(5π/12)]-sin²[x-(5π/12)]
=[sin(x+5π/12)+sin(x-5π/12)]*[sin(x+5π/12)-sin(x-5π/12)] ①
=2sinx*cos(x-5π/12)*2cosx*sin(x-5π/12)
=(2sinx*cosx)*[2sin(x-5π/12)*cos(x-5π/12)]
=sin2x*sin5π/6=sin2x/2
∴sin2x/2=-√3/4
故sin2x=--√3/2
∴2x=2kπ-2π/3 (k∈z)
又 x∈(3π/4,π),得
2x=5π/3
∴x=5π/6
∴tanx=tan5π/6=-√3/3
注:①运用了三角函数的“和差华积公式”
即 sin(a+b)+sin(a-b)=2sina*cosb
sin(a+b)-sin(a-b)=2cona*sinb
=[sin(x+5π/12)+sin(x-5π/12)]*[sin(x+5π/12)-sin(x-5π/12)] ①
=2sinx*cos(x-5π/12)*2cosx*sin(x-5π/12)
=(2sinx*cosx)*[2sin(x-5π/12)*cos(x-5π/12)]
=sin2x*sin5π/6=sin2x/2
∴sin2x/2=-√3/4
故sin2x=--√3/2
∴2x=2kπ-2π/3 (k∈z)
又 x∈(3π/4,π),得
2x=5π/3
∴x=5π/6
∴tanx=tan5π/6=-√3/3
注:①运用了三角函数的“和差华积公式”
即 sin(a+b)+sin(a-b)=2sina*cosb
sin(a+b)-sin(a-b)=2cona*sinb
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询