已知A、B,C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0

已知A、B,C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0。1,求B0。2,当B=3B0/4时,求cosA-cosC的值。... 已知A、B,C是三角形ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0。 1,求B0。2,当B=3B0/4时,求cosA-cosC的值。 展开
 我来答
xiaoxiaoweng0
2014-06-26 · TA获得超过6431个赞
知道大有可为答主
回答量:8895
采纳率:54%
帮助的人:4563万
展开全部
2sinB=sinA+sinC正玄定理得2b=a+c
平方 4b^2=a^2+2ac+c^2
余弦定理 b^2=a^2+c^2-2accosB
cosB=(3(a^2+c^2)/8ac)-1/4越小B越大
=3(a/8c+c/8a)-1/4 a=c cosB最小解B=60 等边三角形
B=3B0/4=45 A+C=135
且由题设可得sinA+sinC=√2
再设cosA-cosC=x
两式平方后再相加,可得
2-2(cosAcosC-sinAsinC)=2+x
∴x=-2cos(A+C)=√2
即x=√2
∴x=±√(√2)
即原式=±√(√2)
妙酒
2014-06-26 · TA获得超过186万个赞
知道顶级答主
回答量:42万
采纳率:93%
帮助的人:20.8亿
展开全部
1、∵2sinB=sinA+sinC=2sin[(A+C)/2]cos[(A-C)/2]
=2sin[(π-B)/2]cos[(A-C)/2]=2cos(B/2)cos[(A-C)/2]
∴4sin(B/2)cos(B/2)=2cos(B/2)cos[(A-C)/2]
∴sin(B/2)=(1/2)cos[(A-C)/2]≤1/2
∴B/2≤π/6
∴B≤π/3
∴B0=π/3
2、B=3B0/4=π/4
则2sinB=sinA+sinC=√2……………………①
设cosA-cosC=x……………………②
①²+②²得
(sinA+sinC)²+(cosA-cosC)=2+x²
sin²A+sin²C+2sinAsinC+cos²A+cos²C-2cosAcosC=2+x²
2-2(cosAcosC-sinAsinC)=2+x²
2-2cos(A+C)=2+x²
所以x²=-2cos(A+C)=2cosB=√2
所以cosA-cosC=x=±(2的4次方根)

请好评
~在我回答的右上角点击【评价】,然后就可以选择【满意,问题已经完美解决】了。
如果你认可我的回答,敬请及时采纳,
~你的采纳是我前进的动力~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式