如图,点D在反比例函数 y= k x (k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO

如图,点D在反比例函数y=kx(k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.(1)求点D的坐标;(2)求反比例函数的解析式... 如图,点D在反比例函数 y= k x (k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形. (1)求点D的坐标;(2)求反比例函数的解析式;(3)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,垂足分别为点A和点E,连结OB,将四边形OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F.求直线BA′的解析式. 展开
 我来答
修为0fl
推荐于2016-10-27 · 超过74用户采纳过TA的回答
知道答主
回答量:189
采纳率:0%
帮助的人:156万
展开全部
(1)过D作DG⊥x轴,交x轴于点G,
∵△ODC为等腰直角三角形,
∴G为OC的中点,即DG为斜边上的中线,
∴DG=OG=
1
2
OC=2,
∴D(2,2),

(2)代入反比例解析式得:2=
k
2
,即k=4,
则反比例解析式为y=
4
x


(3)∵点B是y=
4
x
上一点,B的横坐标为1,
∴y=
4
1
=4,
∴B(1,4),
由折叠可知:△BOA′≌△BOA,
∵OA=1,AB=4,
∴BE=A′O=1,OE=BA′=4,
又∵∠OAB=90°,∠A′FO=∠BFE,
∴∠BA′O=∠OEB=90°,
∴△OA′F≌△BFE(AAS),
∴A′F=EF,
∵OE=EF+OF=4,
∴A′F+OF=4,
在Rt△A′OF中,由勾股定理得OA′ 2 +A′F 2 =OF 2
设OF=x,则A′F=4-x,
∴1 2 +(4-x) 2 =x 2
∴x=
17
8

∴OF=
17
8
,即F(0,
17
8
),
设直线BA′解析式为y=kx+b,
将B(1,4)与F(0,
17
8
)坐标代入,
得:
k+b=4
b=
17
8

解得:
k=
15
8
b=
17
8

则线BA′解析式为 y=
15
8
x+
17
8

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式