如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE
如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF.(1)求证:DE是半圆的切...
如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF.(1)求证:DE是半圆的切线:(2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论.
展开
2个回答
展开全部
证明:(1)如图扒祥晌,连接OD,则OA=OD,
∴∠OAD=∠ODA,
∵△AED由△ACD对折得到,
∴∠CDA=∠EDA,
又∵CD⊥AB,
∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D点在半圆O上,
∴DE是半圆的切线;
(2)四边形ODFA是菱形,
如图,连接OF,
∵CD⊥OB,
∴△OCD是直角三角形,
∴春锋OC=BC=
OB=
OD,
在Rt△OCD中,∠ODC=30°,
∴∠DOC=60°,
∵∠DOC=∠OAD+∠ODA,
∴∠OAD=∠ODA=∠FAD=30°,宴胡
∴OD∥AF,∠FAO=60°,
又∵OF=OA,
∴△FAO是等边三角形,
∴OA=AF,
∴OD=AF,
∴四边形ODFA是平行四边形,
∵OA=OD,
∴四边形ODFA是菱形.
∴∠OAD=∠ODA,
∵△AED由△ACD对折得到,
∴∠CDA=∠EDA,
又∵CD⊥AB,
∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D点在半圆O上,
∴DE是半圆的切线;
(2)四边形ODFA是菱形,
如图,连接OF,
∵CD⊥OB,
∴△OCD是直角三角形,
∴春锋OC=BC=
1 |
2 |
1 |
2 |
在Rt△OCD中,∠ODC=30°,
∴∠DOC=60°,
∵∠DOC=∠OAD+∠ODA,
∴∠OAD=∠ODA=∠FAD=30°,宴胡
∴OD∥AF,∠FAO=60°,
又∵OF=OA,
∴△FAO是等边三角形,
∴OA=AF,
∴OD=AF,
∴四边形ODFA是平行四边形,
∵OA=OD,
∴四边形ODFA是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)如图,连接OD,则OA=OD,
∴∠OAD=∠ODA,
∵△AED由△ACD对折得到,
∴∠CDA=∠EDA,
又∵CD⊥AB,
∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D点在半圆O上,
∴DE是半圆的切线;
(2)四边形ODFA是菱形,
如图,连接OF,
∵孝扒CD⊥OB,
∴△OCD是直角三角形,
∴OC=BC=1/2
OB=1/2
OD,
在Rt△OCD中,∠ODC=30°,
∴∠DOC=60°,迹陆
∵∠DOC=∠OAD+∠ODA,
∴∠OAD=∠ODA=∠FAD=30°,
∴巧州昌OD∥AF,∠FAO=60°,
又∵OF=OA,
∴△FAO是等边三角形,
∴OA=AF,
∴OD=AF,
∴四边形ODFA是平行四边形,
∵OA=OD,
∴四边形ODFA是菱形.
∴∠OAD=∠ODA,
∵△AED由△ACD对折得到,
∴∠CDA=∠EDA,
又∵CD⊥AB,
∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D点在半圆O上,
∴DE是半圆的切线;
(2)四边形ODFA是菱形,
如图,连接OF,
∵孝扒CD⊥OB,
∴△OCD是直角三角形,
∴OC=BC=1/2
OB=1/2
OD,
在Rt△OCD中,∠ODC=30°,
∴∠DOC=60°,迹陆
∵∠DOC=∠OAD+∠ODA,
∴∠OAD=∠ODA=∠FAD=30°,
∴巧州昌OD∥AF,∠FAO=60°,
又∵OF=OA,
∴△FAO是等边三角形,
∴OA=AF,
∴OD=AF,
∴四边形ODFA是平行四边形,
∵OA=OD,
∴四边形ODFA是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询