某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增
某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使...
某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
展开
展开全部
(1)设每件商品提高x元,
则每件利润为(10+x-8)=(x+2)元,
每天销售量为(200-20x)件,
依题意,得:
(x+2)(200-20x)=700.
整理得:x2-8x+15=0.
解得:x1=3,x2=5.
∴把售价定为每件13元或15元能使每天利润达到700元;
答:把售价定为每件13元或15元能使每天利润达到700元.
(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,
根据题意得:
y=(x-8)(200-
×10),
=-20x2+560x-3200,
=-20(x2-28x)-3200,
=-20(x2-28x+142)-3200+20×142
=-20(x-14)2+720,
∴x=14时,利润最大y=720.
答:应将售价定为14元时,才能使所赚利润最大,最大利润为720元.
则每件利润为(10+x-8)=(x+2)元,
每天销售量为(200-20x)件,
依题意,得:
(x+2)(200-20x)=700.
整理得:x2-8x+15=0.
解得:x1=3,x2=5.
∴把售价定为每件13元或15元能使每天利润达到700元;
答:把售价定为每件13元或15元能使每天利润达到700元.
(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,
根据题意得:
y=(x-8)(200-
x?10 |
0.5 |
=-20x2+560x-3200,
=-20(x2-28x)-3200,
=-20(x2-28x+142)-3200+20×142
=-20(x-14)2+720,
∴x=14时,利润最大y=720.
答:应将售价定为14元时,才能使所赚利润最大,最大利润为720元.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询