直线Y=-4/3X+4和X轴、Y轴的交点分别为B、C,点A的坐标是(-2,0)。

1)在运动过程中,当△BMN是直角三角形时,求t的值。2)在运动过程中,当△MON为直角三角形时,求t的值。... 1) 在运动过程中,当△BMN是直角三角形时,求t的值。
2)在运动过程中,当△MON为直角三角形时,求t的值。
展开
yuyou403
2014-11-18 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部

题目:

直线Y=-4/3X+4和X轴、Y轴的交点分别为B、C,点A的坐标是(-2,0),动点M从点A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动速度均为每秒1个单位长度,当其中一个动点达到终点时,它们都停止运动。设点M运动t(s)时,⊿MON的面积为S

1)  在运动过程中,当△BMN是直角三角形时,求t的值。

2)在运动过程中,当△MON为直角三角形时,求t的值。


答:

直线y=(-4/3)x+4与x轴交点B(3,0),与y轴交点C(0,4)

∴AB=3-(-2)=5

∴根据勾股定理解得BC=5

∵点M和点N的速度相等,都是1个单位每秒

∴点M和点N同时到达终点,总运行时间t=5

1)

∵∠MBN不是直角

∴RT△BMN是直角三角形只能是∠BMN=90°或者∠BNM=90°

当∠BMN=90°时,MN垂直x轴

∴RT△BMN∽RT△BOC

∴BM:BO=BN:BC

∴(5-t):3=t:5

解得:t=25/8<5,符合

当∠BNM=90°时,MN⊥BC

∴RT△BNM∽RT△BOC

∴BN:BO=BM:BC

∴t:3=(5-t):5

解得:t=15/8<5,符合

综上所述,t=15/8或者t=25/8时,△BMN是直角三角形

2)

很显然,t=5即点M到点B、点N到点C时,△MON是RT△

显然,从1)知道,MN⊥x轴即t=25/8时,△MON是RT△

当点M在AO线段上时,△MON是钝角三角形,不符合

当M在线段BO内时,如果ON⊥MN,则有:ON²+MN²=OM²

∵点N(3-3t/5,4t/5),点M(t-2,0)

∴(3-3t/5-0)²+(4t/5-0)²+(3-3t/5-t+2)²+(4t/5-0)²=(t-2)²

整理得:(16/5)t²-12t+21=0

判别式△<0,上述方程无实数解

综上所述,t=25/8或者t=5时,△MON是直角三角形


帅气的稻草人90
2014-11-15
知道答主
回答量:1
采纳率:0%
帮助的人:1310
展开全部
m点和n点在哪
追问
动点M从点A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动速度均为每秒1个单位长度,当其中一个动点达到终点时,它们都停止运动。设点M运动t(s)时,⊿MON的面积为S.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式