已知{an}是等比数列,a2=2,a5=1/4,则a1*a2+a3*a4+……+a(n+1)*an

西域牛仔王4672747
2012-07-26 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30559 获赞数:146238
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
由 a2=a1*q=2 ,a5=a1*q^4=1/4 得 q=1/2 ,a1=4 ,
因此 an=a1*q^(n-1)=4*(1/2)^(n-1) ,
所以,an*a(n+1)=4*(1/2)^(n-1)*4*(1/2)^n=16*(1/2)^(2n-1)=8*(1/4)^(n-1) ,
因此{an*a(n+1)}是首项为 8 ,公比为 1/4 的等比数列,
则 a1*a2+a2*a3+.....+an*a(n+1)
=8*[1-(1/4)^n]/(1-1/4)
=32/3*[1-(1/4)^n] 。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式