(2009?丹东二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上
(2009?丹东二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.(I)求证:CA1⊥C1...
(2009?丹东二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.(I)求证:CA1⊥C1P;(II)若四面体P-AB1C1的体积为16,求二面角C1-PB1-A1的余弦值.
展开
展开全部
(I)证明:连接AC1,∵侧棱AA1⊥底面ABC,∴AA1⊥AB,又∵AB⊥AC.
∴AB⊥平面A1ACC1.又∵CA1?平面A1ACC1,∴AB⊥CA1.(2分)
∵AC=AA1=1,∴四边形A1ACC1为正方形,∴AC1⊥CA1.
∵AC1∩AB=A,∴CA1⊥平面AC1B.(4分)
又C1P?平面AC1B,∴CA1⊥C1P. (6分)
(II)解:∵AC⊥AB,AA1⊥AC,且C1A1⊥平面ABB1A,BB1⊥AB,
由VP?AB1C1=VC1?PAB1=
,知
S△PAB1?C1A1=
×
PA?BB1=
×
×PA×1=
,
解得PA=1,P是AB的中点.
(8分)
连接A1P,则PB1⊥A1P,∵C1A1⊥平面A1B1BA,∴PB1⊥C1A1,∴PB1⊥C1P,
∴∠C1PA1是二面角的平面角,(10分)
在直角三角形C1PA1中,C1A1=1,PA1=
,∴C1P=
,
∴cos∠C1PA1=
=
,即二面角的余弦值是
∴AB⊥平面A1ACC1.又∵CA1?平面A1ACC1,∴AB⊥CA1.(2分)
∵AC=AA1=1,∴四边形A1ACC1为正方形,∴AC1⊥CA1.
∵AC1∩AB=A,∴CA1⊥平面AC1B.(4分)
又C1P?平面AC1B,∴CA1⊥C1P. (6分)
(II)解:∵AC⊥AB,AA1⊥AC,且C1A1⊥平面ABB1A,BB1⊥AB,
由VP?AB1C1=VC1?PAB1=
1 |
6 |
1 |
3 |
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
6 |
解得PA=1,P是AB的中点.
(8分)
连接A1P,则PB1⊥A1P,∵C1A1⊥平面A1B1BA,∴PB1⊥C1A1,∴PB1⊥C1P,
∴∠C1PA1是二面角的平面角,(10分)
在直角三角形C1PA1中,C1A1=1,PA1=
2 |
3 |
∴cos∠C1PA1=
PA1 |
C1P |
| ||
3 |
|