(2009?丹东二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上

(2009?丹东二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.(I)求证:CA1⊥C1... (2009?丹东二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.(I)求证:CA1⊥C1P;(II)若四面体P-AB1C1的体积为16,求二面角C1-PB1-A1的余弦值. 展开
 我来答
手机用户82666
2014-09-09 · TA获得超过209个赞
知道答主
回答量:192
采纳率:100%
帮助的人:67.7万
展开全部
(I)证明:连接AC1,∵侧棱AA1⊥底面ABC,∴AA1⊥AB,又∵AB⊥AC.
∴AB⊥平面A1ACC1.又∵CA1?平面A1ACC1,∴AB⊥CA1.(2分)
∵AC=AA1=1,∴四边形A1ACC1为正方形,∴AC1⊥CA1
∵AC1∩AB=A,∴CA1⊥平面AC1B.(4分)
又C1P?平面AC1B,∴CA1⊥C1P. (6分)
(II)解:∵AC⊥AB,AA1⊥AC,且C1A1⊥平面ABB1A,BB1⊥AB,
VP?AB1C1VC1?PAB1
1
6
,知
1
3
SPAB1?C1A1
1
3
× 
1
2
PA?BB1
=
1
3
×
1
2
×PA×1=
1
6

解得PA=1,P是AB的中点.
(8分)
连接A1P,则PB1⊥A1P,∵C1A1⊥平面A1B1BA,∴PB1⊥C1A1,∴PB1⊥C1P,
∴∠C1PA1是二面角的平面角,(10分)
在直角三角形C1PA1中,C1A1=1,PA1
2
,∴C1P=
3

cos∠C1PA1
PA1
C1P
6
3
,即二面角的余弦值是
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消